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Molecular dynamics (‘Newton’)

A molecular dynamics algorithm for hard spheres (billiard):

t = 0 t = 1.25

wall collision

t = 2.18 t = 3.12

pair collision

t = 3.25 t = 4.03

t = 4.04 t = 5.16 t = 5.84 t = 8.66 t = 9.33 t = 10.37

. . . starting point of Molecular dynamics, in 1957 . . .

. . . treats positions and velocities . . .

. . . useful for N ≫ 4, but times extremely short . . .

. . . converges towards thermal equilibrium.



Markov-chain Monte Carlo (‘Boltzmann’)

A local Markov-chain Monte Carlo algorithm for hard
spheres (billiard):

i = 1 (rej.) i = 2 i = 3 i = 4 (rej.) i = 5 i = 6

i = 7 i = 8 (rej.) i = 9 (rej.) i = 10 i = 11 i = 12 (rej.)

. . . starting point of Markov chain Monte Carlo, in 1953 . . .

. . . treats only positions . . .

. . . useful for N ≫ 4 . . .

. . . converges towards thermal equilibrium.



Physics of crystallization in 2D

density η = 0.48 density η = 0.72

At low density, disks move easily (liquid)

. . . at high density, MC algorithms slow down and disks
crystallize . . .

. . . but the crystal cannot have long-range (positional) order



Single discrete hard sphere (‘3 × 3 pebble game’)

Monte Carlo algorithm for one hard sphere on a lattice:

i = 0

initial conf.

i = 1 i = 2 (rej.) i = 3 i = 4 i = 5 (rej.)

i = 6 i = 7 i = 8 i = 9 i = 10 i = 11

Move ‘up’, ‘down’, ‘left’, ‘right’, each with probability 1/4.

Reject moves if necessary (i = 2, i = 5).



Transfer matrix of 3 × 3 pebble game

Transfer matrix of algorithmic probabilities p(a → b):

{p(a → b)} =
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{π(1), . . . , π(9)} = {1
9 , . . . , 1

9} is eigenvector.



Exponential convergence in the 3 × 3 pebble game

πi(site 1) for simulation started in the right upper corner
(site 9):

0.0001

0.01

1

0 10 20 30

p
ro

b
. 
(s

h
if
te

d
) 

1
/9

 −
 π

i (1
)

iteration i

exact
(0.75)

i

Exponential convergence ≡ scale:

(0.75)i = exp [i · log 0.75] = exp
[

−
i

3.476

]

.



Correlation time in larger simulations

i = 0

disk k

... i = 25600000000

same disk

τ exists, but it is large (τ ≫ 25 600 000 000).



Minimum running time of a Monte Carlo algorithm

Knowing correlation time τ would be nice (Part I).

A faster algorithm would be nice (Part II).

An infinitely long simulation would be nice (Part III).



Mixing time (square box)
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Correlation time ≡ correlation time of order parameter
much better than diffusion-constants criterion . . .
. . . hypothesis, but more cautious than what others do...



Cluster algorithm for hard spheres

a a ( + move) b

return move

Satisfies p(a → b) = p(b → a), is ergodic.

Cluster move, rejection-free (Dress & Krauth ’95).

Many applications, but algorithm no good for 2d melting.



Event-chain . . . maximizing local moves

i f

rejection-free

detailed balance OK (θ ∈ [0, 2π])

moves each disk as far as possible

E. Bernard, W. Krauth, D. B. Wilson (arXiv:0903.2954)



Giving up detailed balance



Timing issues
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Equilibrated configuration



Dislocations



Return of the ‘3 × 3 pebble game’

i = 0

initial conf.

i = 1 i = 2 (rej.) i = 3 i = 4 i = 5 (rej.)

i = 6 i = 7 i = 8 i = 9 i = 10 i = 11

To prove that Monte Carlo simulation is in equilibrium, we must
either compute correlation time τ = 3.476 . . . . . .
or do an infinitely long simulation (reach i = ∞) . . .
or both



Infinite simulations (in 3 × 3 pebble game)

Do not start at t = 0, start in the past, at i = −∞:

i = 0 (now) 

i = − ∞

The configuration at i = 0 is an ‘exact sample’.



Coupling random maps in the 3 × 3 pebble game

i = − 17 i = − 16 i = − 15 i = − 14 i = − 13 i = − 12

i = − 11 i = − 10 i = − 9 i = − 8 i = − 7 i = − 6

i = − 5 i = − 4 i = − 3 i = − 2 i = − 1 i =  0 (now)

NB: Proof of coupling by naive enumeration and exhaustion.



Infinite simulation with random maps

i = 0 (now) 

i = − ∞

The configuration at i = 0 is a perfect sample.
It can be computed through finite back-track.
Propp & Wilson (1995): landmark paper.
Can work for spin glasses and hard spheres (Chanal &
Krauth (’08, ’09)).



More transfer matrices...

The dynamics of the new pebble game is again described
by a transfer matrix:

T forward =















T 1,1 T 2,1 . . . . . .

0 T 2,2 T 3,2 . . .

0 0 T 3,3 . . .

. . .
. . .

0 0 T N,N















Triangular matrix: second-largest eigenvalue ≥
second-largest eigenvalue of T 1,1.

therefore: coupling time ≥ convergence time



Updates on large lattices (spin systems)

64 × 64 Ising spin glass
has 232×64 ∼ 3 × 10616

states.

We must rigorously
show that they ‘all’
couple.

Non-monotone model.

Using patches k on the lattice, and sets of patches Sk on
patch k (k = 1, . . . , N), we define

Ω = S1 ⊗ S2 ⊗ · · · ⊗ SN/(pairwise compat.).

Ω is overcomplete, but storage linear in lattice size

N × 2m2/2

for N lattice sites and patches of size m × m.



Patches and compatibilities

l
k

spin configs patch lpatch k



Exact sampling for hard spheres

Continuous system...with hidden discrete structure...

Patch algorithm reaches finite densities η ≤ 0.3 for
N → ∞...

. . . improves on Wilson’s algorithm.



Conclusion

We discussed Monte Carlo methods for hard spheres

Convergence issues

new algorithms

new insight into melting transition..

Exact sampling, coupling from the past (doing an infinitely
long Monte Carlo simulation).

. . .


